In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Import the pandas library for managing data
#
import pandas as pd

Set the notebook so that it can display all countries in a dataframe
#
pd.set option('display.max rows', 200)

Define variables for reading in the data worksheet from the World Ban
k's Doing Business website

#

data_url = 'http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Docum
ents/Data/DBl8-Historical-data-complete-data-with-DTFs.xlsx'

sheet = "All Data"

header row = 1 # the convention in Python is 0O-based indexes; in the wor
ksheet the header is in row 2

#

Read the data sheet into a pandas dataframe df

Use the header to get variable / column names

Convert the value 'No Practice' to NaN - not a number

#

df = pd.read excel(data url,sheet name = sheet, header = header row, na_
values = ['No Practice'])

Remove the #-delimiter on the line below, to see rows that include Ban
gladesh

#

#df[150:200]

#

It is one of the countries where a second city was added. It is becaus
e of these additions

that later there is a cell that drops rows if

"len(df2.loc[i, 'code']) != 3"

that is, if the code has more or less characters than the 3-letters
that were used for the original observations

WO W W KR K

In [6]:

Create a dictionary with keys that are the existing variable names and
values that are the new names I use

#

Note that the import from the excel sheet includes some random line br

eak characters '\n'

#
rename variables = {'Country code': 'code',

'DB Year': 'year',

'Procedures - Men (number) ': 's procs',

'Time - Men (days)': 's time',

'Cost - Men (% of income per capita)': 's cost',

'Minimum capital (% of income per capita)': 's min c
ap',

'Procedures (number)': 'cn procs', 'Time (days)': 'c
n_time',

'Cost (% of Warehouse value)': 'cn cost',

'Procedures (number).l': 'e procs',

'Time (days).l': 'e time',

'Cost (% of income per capita)': 'e cost',

'Procedures (number).2': 'rp procs',

'Time (days).2': 'rp time',

'Cost (% of property value)': 'rp cost',

'Strength of legal rights index (0-12) (DB15-18 meth
odology) ': 'ct_s',

'Depth of credit information index (0-8) (DB15-18 me
thodology) ': 'ct d',

'Extent of conflict of interest regulation index (0-
10)\n(DB15-18 methodology) ':'pm cft',

'Extent of shareholder governance index (0-10) (DB15
-18 methodology) ':'pm gv',

'Payments (number per year)': 't p', 'Time (hours pe
r year) ':

't t', 'Total tax rate (% of profit)': 't tr',

'Time (days).3': 'en time',

'Cost (% of claim)': 'en cost',

'Recovery rate (cents on the dollar)': 'ri r',

'Strength of insolvency framework index (0-16) (DB15
-18 methodology)': 'ri s'

}

Treat the variable names as a set so that set subtraction specifies th
e one to drop

#

all vars = set(df.columns.values)

0ld_names from for the variables that the code keeps and renames
old names = set(rename variables.keys())

The implied set of variables to drop
vars_to drop = all vars - old names

Create a list with the new names for the variables that remain
new names = list(rename variables.values())

In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

Make an independent copy of the dataframe.

#

If I want to redo my calculations as I work interactively, I can just
re-execute this cell without

reloading the data from the external website

#

df2 = pd.DataFrame(df.copy(deep = True))

Convert the set of variables that I will drop from a set to a list
#

el 2 = list(vars_to_drop)

#

#len(df2.columns.values) # count of variables before the drop

#

Drop the variables

#

df2.drop(el 2, axis = 1, inplace = True)

#

#len(df2.columns.values) # to check the variable count after the drop

Rename the columns / variables that remain

#

df2.rename(columns=rename variables, inplace = True)

#

To verify that rename and drop affects df2 but not df, uncomment one,
then other of next two lines and compare

#df

#df2

Drop years before and including 2013

#

df2.drop(labels = [i for i in df2.index if df2.loc[i, 'year'] <= 2013], i
nplace = True)

#

#len(df2)

As noted above, drop recently added extra cities

#

df2.drop(labels = [i for i in df2.index if len(df2.loc[i,'code']) != 3],
inplace = True)

#

#len(df2)

Specify a multi-index for the remaining variables
#

df2.set index(['year', 'code'], inplace=True)

#

#df2 # inspect results

In [13]:

In [14]:

In [15]:

Create a separate dataframe to store the normalized or distance to the
frontier (DTF) values

for different indicators.

#

dtf = pd.DataFrame(df2.copy(deep = True))

Create a list of all the indicators that remain

el 3 = list(dtf.columns.values)
#el 3

#

#len(el 3)

Indicators in high are ones where bigger values are better; opposite f
or variables in low

#
high = ['ct_s', 'ct d', 'pm cft', 'pm gv', 'ri r', 'ri s']
low = ['s procs', 's time', 's cost', 's min cap', 'cn procs', 'cn time'
I
'cn cost', 'e procs', 'e time', 'e cost', 'rp procs', 'rp time',
'rp cost', 't p', 't t', 't tr', 'en time', 'en cost']
#

len(high) + len(low)

In [16]: # This loop calculates the distance to the frontier for the 24 variables
that are available in a consistent
form for the years I consider, DB2014-18, or calendar 2013-17.

These normalized values are stored in the dtf dataframe. The raw value
remainin in the df2 dataframe.

The loop defines the distance to the frontier by taking the biggest an
smallest values for
each variable in any year from DB years 2014-18.

WM W HR KDL W W W

I wrote the code as I did assuming that I would use the max and min in
each year; then I found

that they change over time, sometimes substantially. This is the ty

pe of issue that I understand only

if I work directly with the data myself.

#

This problem is that the min (worst) value for an indicator can change
dramatically based on

what happens in a single country with a very bad business environme
nt.

So I added the two lines that calculate mn m and mx m by taking the
min and

max over all DB years from 2014 to 2018. This decision influences t
he relative influence that

different indicators have in my results.

#

This is an important point. Suppose that it takes every other country
between 10 and 100 days to
to issue a permit, but in one laggard it takes 10,000 days. Then al

1 other countries will have a DTF
score for this indicator in the range 10/10,000 to 100/10,000. In t
his case, a country that takes only

10 days gets almost no recognition for its better performance relat
ive to a country that takes 100.
#

The DTF value for this permit indicator will be 0.999 for the country
that takes 10 days

and 0.990 for the country that takes 100 days. When this indicator
is averaged along with 8 or 9 others,

it will have an effect on the overall indicator that is visible onl

y in the third decimal place. It will

be swamped by variation in other indicators.

#

My choice is not one that I would defend as being the right way to det

ermine the relative influence of

different indicators. It underweights indicators with a fat lower
(that is worse) tail. I haven't explored

the sensitivity of the results for Chile to alternative choices bec

ause I didn't want to be accused of

manipulating the data to get some particular outcome.

#

For my purpose, the choice I made had the advantage that it is arbitra

ry and leads to rankings for

countries that do not change from year to year because of year to y
ear **changes** in the min (worst)

value of an indicator in some lagging country. My choice ensures th
at he range from best to worst,

and hence the relative influence of each indicator, stays fixed ove
r all the years that I consider.

#

One of the advantages of making this code available is that it lets ot

hers do their own sensitivity analysis

with respect to this or any other issue.

#

The approach used by the Doing Business team addresses this concern in
a different way.

For most indicators (but not all), they also take the min and max o
ver a five year interval.

See the description of their approach here:

#

http://www.doingbusiness.orqg/~/media/WBG/DoingBusiness/Documents/A

nnual-Reports/English/DB18-Chapters/DB18-DTF-and-DBRankings.pdf

#

To view the values for the min and max for each variable over all year
s or year by year, uncomment the

print statements in this loop.

#
#

for i in range(len(el 3)):
mn = df2.groupby(['year'])[el 3[i]].min()
#print ('mn = ', mn)
mn m = mn.min()
#print('mn m ',mn m)
mx = df2.groupby(['year'])[el 3[i]].max()
#print ('mx = ', mx)

In [17]:

In [18]:

In [19]:

In [20]:

mx m = mx.max()
#print('mx m ',mx m)
if el 3[i] in low:

dtfl[el 3[i]] = (mx m - df2[el 3[1i]]) / (mx_m - mn_m)
else:

dtf[el 3[i]]

(df2[el 3[i]] - mn m) / (mX_m - mn_m)

#df2[4:5] # Test raw data for visual comparison with Bank numbers from
spreadsheet

#dtf[4:5] # Test dtf or normalized data for comparison with Bank number
s on Afghanistan

Follow the Bank's hierarchical procedure; average the sub-components o
f the different indicators

#

d_=> prefix that means "distance to ...
s => Starting A Business ...

cn => Construction Permits

e => Getting Electricity

rp => Registering Property

ct => Contract Enforcement

pm => Protection for Minority investors

t => Taxes

en => Enforcing Contracts

ri => Resolving Insolvencies

d s = pd.Series((dtf['s procs'] + dtf['s time'] + dtf['s cost'] + dtf['s
_min cap']) / 4)

d cn = pd.Series((dtf['cn procs'] + dtf['cn time'] + dtf['cn cost']) /

"

3)

d e = pd.Series((dtf['e procs'] + dtf['e time'] + dtf['e cost']) / 3)

d rp = pd.Series((dtf['rp procs'] + dtf['rp time'] + dtf['rp cost']) / 3
)

d ct = pd.Series((dtf['ct _s'] + dtf['ct d']) / 2)

o}

| pm = pd.Series((dtf['pm cft'] + dtf['pm gv']) / 2)

|t = pd.Series((dtf['t p'] + dtf['t t'] + dtf['t_tr']) / 3)
| en = pd.Series((dtf['en time'] + dtf['en cost']) / 2)

| ri = pd.Series((dtf['ri r'] + dtf['ri s']) / 2)

o 0 0

The overall average across indicators

I have 9 here because none of the indicators of trade costs are availa
ble for all 5 years

It should be easy to tweak the code to include some of the trade indic
ators but

at the cost of restricting the analysis to the 4 data years 2014 t
o 2017

#

d DTF = pd.Series((d s +dcn +de +drp+dct+dpm+dt+den+
d ri) / 9)

#d_DTF

In [21]: df2 = pd.concat([df2, d s.rename('s'),
d cn.rename('cn'),
d e.rename('e'),
d rp.rename('rp'),
d ct.rename('ct'),
d pm.rename('pm'),
d t.rename('t'),
d en.rename('en'),
d ri.rename('ri'),
d DTF.rename('DTF')], axis=l)
#df2
#len(df2)

In [22]: df2.dropna(axis = 0, subset = ['DTF'], inplace=True)

In [23]: #df2
#len(df2)

In [24]: # Define 5 series, one for each year, indexed by country code

#

d 2018 = pd.Series(df2.loc[2018]['DTF'])
#len(d _2018)

d 2017 = pd.Series(df2.loc[2017]['DTF'])
#len(d _2017)

d 2016 = pd.Series(df2.loc[2016]['DTF'])
#len(d _2016)

d 2015 = pd.Series(df2.loc[2015]['DTF'])
#len(d _2015)

d 2014 = pd.Series(df2.loc[2014]['DTF'])
#len(d _2014)

#

In [25]:

In [26]:

Create series objects that I can sort, one for each year

#

df 2018 = pd.DataFrame(d 2018)

dfs 2018 = df 2018.sort values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')

length=len(dfs_ 2018)

dfs 2018['Rankl8']= pd.Series(range(l, length + 1 ,1), index=dfs 2018.in
dex)

df 2017 = pd.DataFrame(d 2017)

dfs 2017 = df 2017.sort values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')

length=len(dfs 2017)

dfs 2017['Rankl7']= pd.Series(range(l, length + 1 ,1), index=dfs 2017.in
dex)

df 2016 = pd.DataFrame(d_ 2016)

dfs 2016 = df 2016.sort values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')

length=len(dfs 2016)

dfs 2016['Rankl6']= pd.Series(range(l, length + 1 ,1), index=dfs 2016.in
dex)

df 2015 = pd.DataFrame(d 2015)

dfs 2015 = df 2015.sort values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')

length=len(dfs 2015)

dfs 2015['Rankl5']= pd.Series(range(l, length + 1 ,1), index=dfs 2015.in
dex)

df 2014 = pd.DataFrame(d 2014)

dfs 2014 = df 2014.sort values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')

length=len(dfs_2014)

dfs 2014['Rankl4']= pd.Series(range(l, length + 1 ,1), index=dfs 2014.in
dex)

Create a new dataframe object dfs indexed by country code that holds s
orted series

#

Combine the sorted series into a single dataframe indexed by country
#

dfs all = pd.concat([dfs 2014, dfs 2015, dfs 2016, dfs 2017,dfs 2018], a
xis=1)

