
In [1]: # Import the pandas library for managing data

import pandas as pd

In [2]: # Set the notebook so that it can display all countries in a dataframe

pd.set_option('display.max_rows', 200)

In [3]: # Define variables for reading in the data worksheet from the World Ban
k's Doing Business website

data_url = 'http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Docum
ents/Data/DB18-Historical-data-complete-data-with-DTFs.xlsx'
sheet = "All Data"
header_row = 1 # the convention in Python is 0-based indexes; in the wor
ksheet the header is in row 2

In [4]: # Read the data sheet into a pandas dataframe df
Use the header to get variable / column names
Convert the value 'No Practice' to NaN - not a number

df = pd.read_excel(data_url,sheet_name = sheet, header = header_row, na_
values = ['No Practice'])

In [5]: # Remove the #-delimiter on the line below, to see rows that include Ban
gladesh

#df[150:200]

It is one of the countries where a second city was added. It is becaus
e of these additions
that later there is a cell that drops rows if

"len(df2.loc[i,'code']) != 3"

that is, if the code has more or less characters than the 3-letters
 that were used for the original observations

In [6]: # Create a dictionary with keys that are the existing variable names and
 values that are the new names I use

Note that the import from the excel sheet includes some random line br
eak characters '\n'

rename_variables = {'Country code': 'code',
 'DB Year': 'year',
 'Procedures - Men (number) ': 's_procs',
 'Time - Men (days)': 's_time',
 'Cost - Men (% of income per capita)': 's_cost',
 'Minimum capital (% of income per capita)': 's_min_c
ap',
 'Procedures (number)': 'cn_procs', 'Time (days)': 'c
n_time',
 'Cost (% of Warehouse value)': 'cn_cost',
 'Procedures (number).1': 'e_procs',
 'Time (days).1': 'e_time',
 'Cost (% of income per capita)': 'e_cost',
 'Procedures (number).2': 'rp_procs',
 'Time (days).2': 'rp_time',
 'Cost (% of property value)': 'rp_cost',
 'Strength of legal rights index (0-12) (DB15-18 meth
odology) ': 'ct_s',
 'Depth of credit information index (0-8) (DB15-18 me
thodology) ': 'ct_d',
 'Extent of conflict of interest regulation index (0-
10)\n(DB15-18 methodology) ':'pm_cft',
 'Extent of shareholder governance index (0-10) (DB15
-18 methodology) ':'pm_gv',
 'Payments (number per year)': 't_p', 'Time (hours pe
r year)':
 't_t', 'Total tax rate (% of profit)': 't_tr',
 'Time (days).3': 'en_time',
 'Cost (% of claim)': 'en_cost',
 'Recovery rate (cents on the dollar)': 'ri_r',
 'Strength of insolvency framework index (0-16) (DB15
-18 methodology)': 'ri_s'
 }

Treat the variable names as a set so that set subtraction specifies th
e one to drop

all_vars = set(df.columns.values)

Old_names from for the variables that the code keeps and renames
old_names = set(rename_variables.keys())

The implied set of variables to drop
vars_to_drop = all_vars - old_names

Create a list with the new names for the variables that remain
new_names = list(rename_variables.values())

In [7]: # Make an independent copy of the dataframe.

If I want to redo my calculations as I work interactively, I can just
 re-execute this cell without
reloading the data from the external website

df2 = pd.DataFrame(df.copy(deep = True))

In [8]: # Convert the set of variables that I will drop from a set to a list

el_2 = list(vars_to_drop)

#len(df2.columns.values) # count of variables before the drop

Drop the variables

df2.drop(el_2, axis = 1, inplace = True)

#len(df2.columns.values) # to check the variable count after the drop

In [9]: # Rename the columns / variables that remain

df2.rename(columns=rename_variables, inplace = True)

To verify that rename and drop affects df2 but not df, uncomment one,
 then other of next two lines and compare
#df
#df2

In [10]: # Drop years before and including 2013

df2.drop(labels = [i for i in df2.index if df2.loc[i,'year'] <= 2013], i
nplace = True)

#len(df2)

In [11]: # As noted above, drop recently added extra cities

df2.drop(labels = [i for i in df2.index if len(df2.loc[i,'code']) != 3],
 inplace = True)

#len(df2)

In [12]: # Specify a multi-index for the remaining variables

df2.set_index(['year', 'code'], inplace=True)

#df2 # inspect results

In [13]: # Create a separate dataframe to store the normalized or distance to the
 frontier (DTF) values
for different indicators.

dtf = pd.DataFrame(df2.copy(deep = True))

In [14]: # Create a list of all the indicators that remain

el_3 = list(dtf.columns.values)
#el_3

#len(el_3)

In [15]: # Indicators in high are ones where bigger values are better; opposite f
or variables in low

high = ['ct_s', 'ct_d', 'pm_cft', 'pm_gv', 'ri_r', 'ri_s']
low = ['s_procs', 's_time', 's_cost', 's_min_cap', 'cn_procs', 'cn_time'
,
 'cn_cost', 'e_procs', 'e_time', 'e_cost', 'rp_procs', 'rp_time',

 'rp_cost', 't_p', 't_t', 't_tr', 'en_time', 'en_cost']

len(high) + len(low)

In [16]: # This loop calculates the distance to the frontier for the 24 variables
 that are available in a consistent
form for the years I consider, DB2014-18, or calendar 2013-17.

These normalized values are stored in the dtf dataframe. The raw value
s remainin in the df2 dataframe.

The loop defines the distance to the frontier by taking the biggest an
d smallest values for
each variable in any year from DB years 2014-18.

I wrote the code as I did assuming that I would use the max and min in
 each year; then I found
that they change over time, sometimes substantially. This is the ty
pe of issue that I understand only
if I work directly with the data myself.

This problem is that the min (worst) value for an indicator can change
 dramatically based on
what happens in a single country with a very bad business environme
nt.
So I added the two lines that calculate mn_m and mx_m by taking the
 min and
max over all DB years from 2014 to 2018. This decision influences t
he relative influence that
different indicators have in my results.

This is an important point. Suppose that it takes every other country
 between 10 and 100 days to
to issue a permit, but in one laggard it takes 10,000 days. Then al

l other countries will have a DTF
score for this indicator in the range 10/10,000 to 100/10,000. In t
his case, a country that takes only
10 days gets almost no recognition for its better performance relat
ive to a country that takes 100.

The DTF value for this permit indicator will be 0.999 for the country
 that takes 10 days
and 0.990 for the country that takes 100 days. When this indicator
 is averaged along with 8 or 9 others,
it will have an effect on the overall indicator that is visible onl
y in the third decimal place. It will
be swamped by variation in other indicators.

My choice is not one that I would defend as being the right way to det
ermine the relative influence of
different indicators. It underweights indicators with a fat lower
 (that is worse) tail. I haven't explored
the sensitivity of the results for Chile to alternative choices bec
ause I didn't want to be accused of
manipulating the data to get some particular outcome.

For my purpose, the choice I made had the advantage that it is arbitra
ry and leads to rankings for
countries that do not change from year to year because of year to y
ear **changes** in the min (worst)
value of an indicator in some lagging country. My choice ensures th
at he range from best to worst,
and hence the relative influence of each indicator, stays fixed ove
r all the years that I consider.

One of the advantages of making this code available is that it lets ot
hers do their own sensitivity analysis
with respect to this or any other issue.

The approach used by the Doing Business team addresses this concern in
 a different way.
For most indicators (but not all), they also take the min and max o
ver a five year interval.
See the description of their approach here:

http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Documents/A
nnual-Reports/English/DB18-Chapters/DB18-DTF-and-DBRankings.pdf

To view the values for the min and max for each variable over all year
s or year by year, uncomment the
print statements in this loop.

for i in range(len(el_3)):
 mn = df2.groupby(['year'])[el_3[i]].min()
 #print ('mn = ', mn)
 mn_m = mn.min()
 #print('mn_m ',mn_m)
 mx = df2.groupby(['year'])[el_3[i]].max()
 #print ('mx = ', mx)

 mx_m = mx.max()
 #print('mx_m ',mx_m)
 if el_3[i] in low:
 dtf[el_3[i]] = (mx_m - df2[el_3[i]]) / (mx_m - mn_m)
 else:
 dtf[el_3[i]] = (df2[el_3[i]] - mn_m) / (mx_m - mn_m)

In [17]: #df2[4:5] # Test raw data for visual comparison with Bank numbers from
 spreadsheet

In [18]: #dtf[4:5] # Test dtf or normalized data for comparison with Bank number
s on Afghanistan

In [19]: # Follow the Bank's hierarchical procedure; average the sub-components o
f the different indicators

d_ => prefix that means "distance to ..."
s => Starting A Business ...
cn => Construction Permits
e => Getting Electricity
rp => Registering Property
ct => Contract Enforcement
pm => Protection for Minority investors
t => Taxes
en => Enforcing Contracts
ri => Resolving Insolvencies
d_s = pd.Series((dtf['s_procs'] + dtf['s_time'] + dtf['s_cost'] + dtf['s
_min_cap']) / 4)
d_cn = pd.Series((dtf['cn_procs'] + dtf['cn_time'] + dtf['cn_cost']) /
3)
d_e = pd.Series((dtf['e_procs'] + dtf['e_time'] + dtf['e_cost']) / 3)
d_rp = pd.Series((dtf['rp_procs'] + dtf['rp_time'] + dtf['rp_cost']) / 3
)
d_ct = pd.Series((dtf['ct_s'] + dtf['ct_d']) / 2)
d_pm = pd.Series((dtf['pm_cft'] + dtf['pm_gv']) / 2)
d_t = pd.Series((dtf['t_p'] + dtf['t_t'] + dtf['t_tr']) / 3)
d_en = pd.Series((dtf['en_time'] + dtf['en_cost']) / 2)
d_ri = pd.Series((dtf['ri_r'] + dtf['ri_s']) / 2)

In [20]: # The overall average across indicators
I have 9 here because none of the indicators of trade costs are availa
ble for all 5 years
It should be easy to tweak the code to include some of the trade indic
ators but
at the cost of restricting the analysis to the 4 data years 2014 t
o 2017

d_DTF = pd.Series((d_s + d_cn + d_e + d_rp + d_ct + d_pm + d_t + d_en +
d_ri) / 9)
#d_DTF

In [21]: df2 = pd.concat([df2, d_s.rename('s'),
 d_cn.rename('cn'),
 d_e.rename('e'),
 d_rp.rename('rp'),
 d_ct.rename('ct'),
 d_pm.rename('pm'),
 d_t.rename('t'),
 d_en.rename('en'),
 d_ri.rename('ri'),
 d_DTF.rename('DTF')], axis=1)
#df2
#len(df2)

In [22]: df2.dropna(axis = 0, subset = ['DTF'], inplace=True)

In [23]: #df2
#len(df2)

In [24]: # Define 5 series, one for each year, indexed by country code

d_2018 = pd.Series(df2.loc[2018]['DTF'])
#len(d_2018)
d_2017 = pd.Series(df2.loc[2017]['DTF'])
#len(d_2017)
d_2016 = pd.Series(df2.loc[2016]['DTF'])
#len(d_2016)
d_2015 = pd.Series(df2.loc[2015]['DTF'])
#len(d_2015)
d_2014 = pd.Series(df2.loc[2014]['DTF'])
#len(d_2014)

In [25]: # Create series objects that I can sort, one for each year

df_2018 = pd.DataFrame(d_2018)
dfs_2018 = df_2018.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')
length=len(dfs_2018)
dfs_2018['Rank18']= pd.Series(range(1, length + 1 ,1), index=dfs_2018.in
dex)

df_2017 = pd.DataFrame(d_2017)
dfs_2017 = df_2017.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')
length=len(dfs_2017)
dfs_2017['Rank17']= pd.Series(range(1, length + 1 ,1), index=dfs_2017.in
dex)

df_2016 = pd.DataFrame(d_2016)
dfs_2016 = df_2016.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')
length=len(dfs_2016)
dfs_2016['Rank16']= pd.Series(range(1, length + 1 ,1), index=dfs_2016.in
dex)

df_2015 = pd.DataFrame(d_2015)
dfs_2015 = df_2015.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')
length=len(dfs_2015)
dfs_2015['Rank15']= pd.Series(range(1, length + 1 ,1), index=dfs_2015.in
dex)

df_2014 = pd.DataFrame(d_2014)
dfs_2014 = df_2014.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort')
length=len(dfs_2014)
dfs_2014['Rank14']= pd.Series(range(1, length + 1 ,1), index=dfs_2014.in
dex)

In [26]: # Create a new dataframe object dfs indexed by country code that holds s
orted series

Combine the sorted series into a single dataframe indexed by country

dfs_all = pd.concat([dfs_2014, dfs_2015, dfs_2016, dfs_2017,dfs_2018], a
xis=1)

