
In [1]: # Import the pandas library for managing data  
# 
import pandas as pd 

In [2]: # Set the notebook so that it can display all countries in a dataframe 
# 
pd.set_option('display.max_rows', 200) 

In [3]: # Define variables for reading in the data worksheet from the World Ban
k's Doing Business website 
# 
data_url = 'http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Docum
ents/Data/DB18-Historical-data-complete-data-with-DTFs.xlsx' 
sheet = "All Data" 
header_row = 1 # the convention in Python is 0-based indexes; in the wor
ksheet the header is in row 2  
# 

In [4]: # Read the data sheet into a pandas dataframe df 
# Use the header to get variable / column names  
# Convert the value 'No Practice' to NaN - not a number  
#  
df = pd.read_excel(data_url,sheet_name = sheet, header = header_row, na_
values = ['No Practice']) 

In [5]: # Remove the #-delimiter on the line below, to see rows that include Ban
gladesh 
# 
#df[150:200] 
# 
# It is one of the countries where a second city was added. It is becaus
e of these additions  
#    that later there is a cell that drops rows if  
#  
#       "len(df2.loc[i,'code']) != 3" 
#   
#    that is, if the code has more or less characters than the 3-letters
 that were used for the original observations 
#     



In [6]: # Create a dictionary with keys that are the existing variable names and
 values that are the new names I use 
#  
# Note that the import from the excel sheet includes some random line br
eak characters '\n' 
# 
rename_variables = {'Country code': 'code',  
                    'DB Year': 'year',  
                    'Procedures - Men (number) ': 's_procs', 
                    'Time - Men (days)': 's_time',  
                    'Cost - Men (% of income per capita)': 's_cost',  
                    'Minimum capital (% of income per capita)': 's_min_c
ap',  
                    'Procedures (number)': 'cn_procs', 'Time (days)': 'c
n_time',  
                    'Cost (% of Warehouse value)': 'cn_cost',  
                    'Procedures (number).1': 'e_procs',  
                    'Time (days).1': 'e_time',  
                    'Cost (% of income per capita)': 'e_cost',  
                    'Procedures (number).2': 'rp_procs',  
                    'Time (days).2': 'rp_time',  
                    'Cost (% of property value)': 'rp_cost',  
                    'Strength of legal rights index (0-12) (DB15-18 meth
odology) ': 'ct_s',  
                    'Depth of credit information index (0-8) (DB15-18 me
thodology) ': 'ct_d',  
                    'Extent of conflict of interest regulation index (0-
10)\n(DB15-18 methodology) ':'pm_cft',  
                    'Extent of shareholder governance index (0-10) (DB15
-18 methodology) ':'pm_gv',  
                    'Payments (number per year)': 't_p', 'Time (hours pe
r year)':  
                    't_t', 'Total tax rate (% of profit)': 't_tr',  
                    'Time (days).3': 'en_time',  
                    'Cost (% of claim)': 'en_cost',  
                    'Recovery rate (cents on the dollar)': 'ri_r',  
                    'Strength of insolvency framework index (0-16) (DB15
-18 methodology)': 'ri_s' 
                   } 
 
# Treat the variable names as a set so that set subtraction specifies th
e one to drop 
# 
all_vars = set(df.columns.values) 
 
# Old_names from for the variables that the code keeps and renames  
old_names = set(rename_variables.keys()) 
 
# The implied set of variables to drop 
vars_to_drop = all_vars - old_names 
 
# Create a list with the new names for the variables that remain  
new_names = list(rename_variables.values()) 



In [7]: # Make an independent copy of the dataframe. 
# 
# If I want to redo my calculations as I work interactively, I can just
 re-execute this cell without  
#     reloading the data from the external website 
#  
df2 = pd.DataFrame(df.copy(deep = True)) 

In [8]: # Convert the set of variables that I will drop from a set to a list  
# 
el_2 = list(vars_to_drop) 
# 
#len(df2.columns.values) # count of variables before the drop  
# 
# Drop the variables  
# 
df2.drop(el_2, axis = 1, inplace = True) 
# 
#len(df2.columns.values) # to check the variable count after the drop 

In [9]: # Rename the columns / variables that remain   
# 
df2.rename(columns=rename_variables, inplace = True) 
# 
# To verify that rename and drop affects df2 but not df, uncomment one,
 then other of next two lines and compare  
#df 
#df2 

In [10]: # Drop years before and including 2013  
# 
df2.drop(labels = [i for i in df2.index if df2.loc[i,'year'] <= 2013], i
nplace = True) 
# 
#len(df2)  

In [11]: # As noted above, drop recently added extra cities   
#  
df2.drop(labels = [i for i in df2.index if len(df2.loc[i,'code']) != 3],
 inplace = True) 
# 
#len(df2) 

In [12]: # Specify a multi-index for the remaining variables  
#  
df2.set_index(['year', 'code'], inplace=True) 
# 
#df2 # inspect results  



In [13]: # Create a separate dataframe to store the normalized or distance to the
 frontier (DTF) values  
#    for different indicators.  
# 
dtf = pd.DataFrame(df2.copy(deep = True)) 

In [14]: # Create a list of all the indicators that remain  
 
el_3 = list(dtf.columns.values) 
#el_3 
# 
#len(el_3) 

In [15]: # Indicators in high are ones where bigger values are better; opposite f
or variables in low  
# 
high = ['ct_s', 'ct_d', 'pm_cft', 'pm_gv',  'ri_r', 'ri_s' ] 
low = ['s_procs', 's_time', 's_cost', 's_min_cap', 'cn_procs', 'cn_time'
, 
       'cn_cost', 'e_procs', 'e_time', 'e_cost', 'rp_procs', 'rp_time', 
  
       'rp_cost', 't_p', 't_t', 't_tr', 'en_time', 'en_cost'] 
# 
# len(high) + len(low)  



In [16]: # This loop calculates the distance to the frontier for the 24 variables
 that are available in a consistent   
#    form for the years I consider, DB2014-18, or calendar 2013-17.  
#  
# These normalized values are stored in the dtf dataframe. The raw value
s remainin in the df2 dataframe.  
# 
# The loop defines the distance to the frontier by taking the biggest an
d smallest values for  
#    each variable in any year from DB years 2014-18.  
# 
# I wrote the code as I did assuming that I would use the max and min in
 each year; then I found  
#    that they change over time, sometimes substantially. This is the ty
pe of issue that I understand only  
#    if I work directly with the data myself.  
# 
# This problem is that the min (worst) value for an indicator can change
 dramatically based on  
#    what happens in a single country with a very bad business environme
nt.  
#    So I added the two lines that calculate mn_m and mx_m by taking the
 min and 
#    max over all DB years from 2014 to 2018. This decision influences t
he relative influence that  
#    different indicators have in my results.   
# 
# This is an important point. Suppose that it takes every other country
 between 10 and 100 days to  
#    to issue a permit, but in one laggard it takes 10,000 days. Then al



l other countries will have a DTF  
#    score for this indicator in the range 10/10,000 to 100/10,000. In t
his case, a country that takes only  
#    10 days gets almost no recognition for its better performance relat
ive to a country that takes 100.  
# 
# The DTF value for this permit indicator will be 0.999 for the country
 that takes 10 days  
#    and 0.990 for the country that takes 100 days. When this indicator
 is averaged along with 8 or 9 others,  
#    it will have an effect on the overall indicator that is visible onl
y in the third decimal place. It will  
#    be swamped by variation in other indicators.  
# 
# My choice is not one that I would defend as being the right way to det
ermine the relative influence of  
#    different indicators. It underweights indicators with a fat lower
 (that is worse) tail. I haven't explored  
#    the sensitivity of the results for Chile to alternative choices bec
ause I didn't want to be accused of  
#    manipulating the data to get some particular outcome.  
# 
# For my purpose, the choice I made had the advantage that it is arbitra
ry and leads to rankings for  
#    countries that do not change from year to year because of year to y
ear **changes** in the min (worst)  
#    value of an indicator in some lagging country. My choice ensures th
at he range from best to worst,  
#    and hence the relative influence of each indicator, stays fixed ove
r all the years that I consider.  
# 
# One of the advantages of making this code available is that it lets ot
hers do their own sensitivity analysis 
#    with respect to this or any other issue.  
# 
# The approach used by the Doing Business team addresses this concern in
 a different way.  
#    For most indicators (but not all), they also take the min and max o
ver a five year interval. 
#    See the description of their approach here:  
# 
#     http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Documents/A
nnual-Reports/English/DB18-Chapters/DB18-DTF-and-DBRankings.pdf 
# 
# To view the values for the min and max for each variable over all year
s or year by year, uncomment the  
#    print statements in this loop.   
#  
#  
 
for i in range(len(el_3)): 
    mn = df2.groupby(['year'])[el_3[i]].min() 
    #print ('mn = ', mn) 
    mn_m = mn.min() 
    #print('mn_m ',mn_m) 
    mx = df2.groupby(['year'])[el_3[i]].max() 
    #print ('mx = ', mx) 



    mx_m = mx.max() 
    #print('mx_m ',mx_m) 
    if el_3[i] in low: 
        dtf[el_3[i]] = (mx_m - df2[el_3[i]]) / (mx_m - mn_m) 
    else: 
        dtf[el_3[i]] = (df2[el_3[i]] - mn_m)  / (mx_m - mn_m) 

In [17]: #df2[4:5]  # Test raw data for visual comparison with Bank numbers from
 spreadsheet 

In [18]: #dtf[4:5]  # Test dtf or normalized data for comparison with Bank number
s on Afghanistan 

In [19]: # Follow the Bank's hierarchical procedure; average the sub-components o
f the different indicators 
#  
# d_ => prefix that means "distance to ..." 
# s => Starting A Business ... 
# cn => Construction Permits  
# e => Getting Electricity  
# rp => Registering Property  
# ct => Contract Enforcement  
# pm => Protection for Minority investors 
# t => Taxes 
# en => Enforcing Contracts  
# ri => Resolving Insolvencies  
d_s = pd.Series((dtf['s_procs'] + dtf['s_time'] + dtf['s_cost'] + dtf['s
_min_cap']) / 4) 
d_cn = pd.Series((dtf['cn_procs'] + dtf['cn_time'] +  dtf['cn_cost']) / 
3) 
d_e = pd.Series((dtf['e_procs'] + dtf['e_time'] + dtf['e_cost']) / 3) 
d_rp = pd.Series((dtf['rp_procs'] + dtf['rp_time'] + dtf['rp_cost']) / 3
) 
d_ct = pd.Series((dtf['ct_s'] + dtf['ct_d']) / 2)  
d_pm = pd.Series((dtf['pm_cft'] + dtf['pm_gv']) / 2) 
d_t = pd.Series((dtf['t_p'] + dtf['t_t'] + dtf['t_tr']) / 3) 
d_en = pd.Series((dtf['en_time'] + dtf['en_cost']) / 2) 
d_ri = pd.Series((dtf['ri_r'] + dtf['ri_s']) / 2) 

In [20]: # The overall average across indicators  
# I have 9 here because none of the indicators of trade costs are availa
ble for all 5 years  
# It should be easy to tweak the code to include some of the trade indic
ators but  
#     at the cost of restricting the analysis to the 4 data years 2014 t
o 2017  
# 
d_DTF = pd.Series((d_s + d_cn + d_e + d_rp + d_ct + d_pm + d_t + d_en + 
d_ri) / 9) 
#d_DTF 



In [21]: df2 = pd.concat([df2, d_s.rename('s'),  
                 d_cn.rename('cn'),  
                 d_e.rename('e'),  
                 d_rp.rename('rp'),  
                 d_ct.rename('ct'),  
                 d_pm.rename('pm'),  
                 d_t.rename('t'),  
                 d_en.rename('en'),  
                 d_ri.rename('ri'),  
                 d_DTF.rename('DTF')], axis=1) 
#df2 
#len(df2) 

In [22]: df2.dropna(axis = 0, subset = ['DTF'], inplace=True) 

In [23]: #df2 
#len(df2) 

In [24]: # Define 5 series, one for each year, indexed by country code 
# 
d_2018 = pd.Series(df2.loc[2018]['DTF']) 
#len(d_2018) 
d_2017 = pd.Series(df2.loc[2017]['DTF']) 
#len(d_2017) 
d_2016 = pd.Series(df2.loc[2016]['DTF']) 
#len(d_2016) 
d_2015 = pd.Series(df2.loc[2015]['DTF']) 
#len(d_2015) 
d_2014 = pd.Series(df2.loc[2014]['DTF']) 
#len(d_2014) 
# 



In [25]: # Create series objects that I can sort, one for each year 
#  
df_2018 = pd.DataFrame(d_2018) 
dfs_2018 = df_2018.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort') 
length=len(dfs_2018) 
dfs_2018['Rank18']= pd.Series(range(1, length + 1 ,1), index=dfs_2018.in
dex) 
 
df_2017 = pd.DataFrame(d_2017) 
dfs_2017 = df_2017.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort') 
length=len(dfs_2017) 
dfs_2017['Rank17']= pd.Series(range(1, length + 1 ,1), index=dfs_2017.in
dex) 
 
df_2016 = pd.DataFrame(d_2016) 
dfs_2016 = df_2016.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort') 
length=len(dfs_2016) 
dfs_2016['Rank16']= pd.Series(range(1, length + 1 ,1), index=dfs_2016.in
dex) 
 
df_2015 = pd.DataFrame(d_2015) 
dfs_2015 = df_2015.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort') 
length=len(dfs_2015) 
dfs_2015['Rank15']= pd.Series(range(1, length + 1 ,1), index=dfs_2015.in
dex) 
 
df_2014 = pd.DataFrame(d_2014) 
dfs_2014 = df_2014.sort_values(by =['DTF'], axis=0, ascending=False, inp
lace=False, kind='quicksort') 
length=len(dfs_2014) 
dfs_2014['Rank14']= pd.Series(range(1, length + 1 ,1), index=dfs_2014.in
dex) 

In [26]: # Create a new dataframe object dfs indexed by country code that holds s
orted series   
# 
# Combine the sorted series into a single dataframe indexed by country  
# 
dfs_all = pd.concat([dfs_2014, dfs_2015, dfs_2016, dfs_2017,dfs_2018], a
xis=1) 


