```
In [1]: # Import the pandas library for managing data
        import pandas as pd
In [2]: # Set the notebook so that it can display all countries in a dataframe
        pd.set_option('display.max_rows', 200)
In [3]: # Define variables for reading in the data worksheet from the World Ban
        k's Doing Business website
        data_url = 'http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Docum
        ents/Data/DB18-Historical-data-complete-data-with-DTFs.xlsx'
        sheet = "All Data"
        header_row = 1 # the convention in Python is 0-based indexes; in the wor
        ksheet the header is in row 2
In [4]: # Read the data sheet into a pandas dataframe df
        # Use the header to get variable / column names
        # Convert the value 'No Practice' to NaN - not a number
        df = pd.read excel(data url, sheet name = sheet, header = header row, na
        values = ['No Practice'])
In [5]: # Remove the #-delimiter on the line below, to see rows that include Ban
        gladesh
        #df[150:200]
        # It is one of the countries where a second city was added. It is becaus
        e of these additions
             that later there is a cell that drops rows if
        #
        #
                 "len(df2.loc[i,'code']) != 3"
             that is, if the code has more or less characters than the 3-letters
         that were used for the original observations
```

```
In [6]: # Create a dictionary with keys that are the existing variable names and
         values that are the new names I use
        # Note that the import from the excel sheet includes some random line br
        eak characters '\n'
        rename_variables = {'Country code': 'code',
                             'DB Year': 'year',
                             'Procedures - Men (number) ': 's procs',
                             'Time - Men (days)': 's_time',
                             'Cost - Men (% of income per capita)': 's cost',
                             'Minimum capital (% of income per capita)': 's min c
        ap',
                             'Procedures (number)': 'cn procs', 'Time (days)': 'c
        n time',
                             'Cost (% of Warehouse value)': 'cn_cost',
                             'Procedures (number).1': 'e_procs',
                             'Time (days).1': 'e_time',
                             'Cost (% of income per capita)': 'e_cost',
                             'Procedures (number).2': 'rp procs',
                             'Time (days).2': 'rp_time',
                             'Cost (% of property value)': 'rp_cost',
                             'Strength of legal rights index (0-12) (DB15-18 meth
        odology) ': 'ct_s',
                             'Depth of credit information index (0-8) (DB15-18 me
        thodology) ': 'ct_d',
                             'Extent of conflict of interest regulation index (0-
        10) \n(DB15-18 methodology) ': 'pm cft',
                             'Extent of shareholder governance index (0-10) (DB15
        -18 methodology) ':'pm gv',
                             'Payments (number per year)': 't p', 'Time (hours pe
        r year)':
                             't_t', 'Total tax rate (% of profit)': 't_tr',
                             'Time (days).3': 'en time',
                             'Cost (% of claim)': 'en cost',
                             'Recovery rate (cents on the dollar)': 'ri r',
                             'Strength of insolvency framework index (0-16) (DB15
        -18 methodology)': 'ri_s'
        # Treat the variable names as a set so that set subtraction specifies th
        e one to drop
        all vars = set(df.columns.values)
        # Old names from for the variables that the code keeps and renames
        old_names = set(rename_variables.keys())
        # The implied set of variables to drop
        vars to drop = all vars - old names
        # Create a list with the new names for the variables that remain
        new names = list(rename variables.values())
```

```
In [7]: # Make an independent copy of the dataframe.
         # If I want to redo my calculations as I work interactively, I can just
          re-execute this cell without
               reloading the data from the external website
         df2 = pd.DataFrame(df.copy(deep = True))
 In [8]: # Convert the set of variables that I will drop from a set to a list
         el_2 = list(vars_to_drop)
         #len(df2.columns.values) # count of variables before the drop
         # Drop the variables
         df2.drop(el 2, axis = 1, inplace = True)
         #len(df2.columns.values) # to check the variable count after the drop
 In [9]: # Rename the columns / variables that remain
         df2.rename(columns=rename variables, inplace = True)
         # To verify that rename and drop affects df2 but not df, uncomment one,
          then other of next two lines and compare
         #df
         #df2
In [10]: # Drop years before and including 2013
         df2.drop(labels = [i for i in df2.index if df2.loc[i,'year'] <= 2013], i</pre>
         nplace = True)
         #len(df2)
In [11]: # As noted above, drop recently added extra cities
         df2.drop(labels = [i for i in df2.index if len(df2.loc[i,'code']) != 3],
          inplace = True)
         #len(df2)
In [12]: # Specify a multi-index for the remaining variables
         df2.set_index(['year', 'code'], inplace=True)
         #df2 # inspect results
```

len(high) + len(low)

```
In [16]: # This loop calculates the distance to the frontier for the 24 variables
          that are available in a consistent
              form for the years I consider, DB2014-18, or calendar 2013-17.
         # These normalized values are stored in the dtf dataframe. The raw value
         s remainin in the df2 dataframe.
         # The loop defines the distance to the frontier by taking the biggest an
         d smallest values for
              each variable in any year from DB years 2014-18.
         # I wrote the code as I did assuming that I would use the max and min in
          each year; then I found
              that they change over time, sometimes substantially. This is the ty
         pe of issue that I understand only
         #
              if I work directly with the data myself.
         # This problem is that the min (worst) value for an indicator can change
          dramatically based on
              what happens in a single country with a very bad business environme
         nt.
              So I added the two lines that calculate mn m and mx m by taking the
          min and
              max over all DB years from 2014 to 2018. This decision influences t
         he relative influence that
              different indicators have in my results.
         #
         # This is an important point. Suppose that it takes every other country
          between 10 and 100 days to
              to issue a permit, but in one laggard it takes 10,000 days. Then al
```

```
l other countries will have a DTF
     score for this indicator in the range 10/10,000 to 100/10,000. In t
his case, a country that takes only
     10 days gets almost no recognition for its better performance relat
ive to a country that takes 100.
# The DTF value for this permit indicator will be 0.999 for the country
 that takes 10 days
     and 0.990 for the country that takes 100 days. When this indicator
is averaged along with 8 or 9 others,
     it will have an effect on the overall indicator that is visible onl
y in the third decimal place. It will
     be swamped by variation in other indicators.
#
# My choice is not one that I would defend as being the right way to det
ermine the relative influence of
     different indicators. It underweights indicators with a fat lower
 (that is worse) tail. I haven't explored
     the sensitivity of the results for Chile to alternative choices bec
ause I didn't want to be accused of
     manipulating the data to get some particular outcome.
# For my purpose, the choice I made had the advantage that it is arbitra
ry and leads to rankings for
     countries that do not change from year to year because of year to y
ear **changes** in the min (worst)
     value of an indicator in some lagging country. My choice ensures th
at he range from best to worst,
     and hence the relative influence of each indicator, stays fixed ove
r all the years that I consider.
# One of the advantages of making this code available is that it lets ot
hers do their own sensitivity analysis
     with respect to this or any other issue.
# The approach used by the Doing Business team addresses this concern in
 a different way.
     For most indicators (but not all), they also take the min and max o
ver a five year interval.
     See the description of their approach here:
      http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Documents/A
nnual-Reports/English/DB18-Chapters/DB18-DTF-and-DBRankings.pdf
# To view the values for the min and max for each variable over all year
s or year by year, uncomment the
#
    print statements in this loop.
#
for i in range(len(el 3)):
    mn = df2.groupby(['year'])[el_3[i]].min()
    #print ('mn = ', mn)
   mn m = mn.min()
    #print('mn_m ',mn_m)
    mx = df2.groupby(['year'])[el_3[i]].max()
    \#print ('mx = ', mx)
```

```
mx_m = mx.max()
#print('mx_m ',mx_m)
if el_3[i] in low:
    dtf[el_3[i]] = (mx_m - df2[el_3[i]]) / (mx_m - mn_m)
else:
    dtf[el_3[i]] = (df2[el_3[i]] - mn_m) / (mx_m - mn_m)
```

- In [17]: #df2[4:5] # Test raw data for visual comparison with Bank numbers from spreadsheet
- In [18]: #dtf[4:5] # Test dtf or normalized data for comparison with Bank number s on Afghanistan

```
In [19]: # Follow the Bank's hierarchical procedure; average the sub-components o
         f the different indicators
         #
         # d => prefix that means "distance to ..."
         # s => Starting A Business ...
         # cn => Construction Permits
         # e => Getting Electricity
         # rp => Registering Property
         # ct => Contract Enforcement
         # pm => Protection for Minority investors
         # t => Taxes
         # en => Enforcing Contracts
         # ri => Resolving Insolvencies
         d s = pd.Series((dtf['s procs'] + dtf['s time'] + dtf['s cost'] + dtf['s
          min cap']) / 4)
         d cn = pd.Series((dtf['cn procs'] + dtf['cn time'] + dtf['cn cost']) /
         3)
         d e = pd.Series((dtf['e procs'] + dtf['e time'] + dtf['e cost']) / 3)
         d rp = pd.Series((dtf['rp procs'] + dtf['rp time'] + dtf['rp cost']) / 3
         d ct = pd.Series((dtf['ct s'] + dtf['ct d']) / 2)
         d pm = pd.Series((dtf['pm cft'] + dtf['pm gv']) / 2)
         d_t = pd.Series((dtf['t_p'] + dtf['t_t'] + dtf['t_tr']) / 3)
         d en = pd.Series((dtf['en_time'] + dtf['en_cost']) / 2)
         d_ri = pd.Series((dtf['ri_r'] + dtf['ri_s']) / 2)
```

```
In [20]: # The overall average across indicators
# I have 9 here because none of the indicators of trade costs are availa
ble for all 5 years
# It should be easy to tweak the code to include some of the trade indic
ators but
# at the cost of restricting the analysis to the 4 data years 2014 t
o 2017
#
d_DTF = pd.Series((d_s + d_cn + d_e + d_rp + d_ct + d_pm + d_t + d_en +
d_ri) / 9)
#d_DTF
```

```
In [21]: df2 = pd.concat([df2, d_s.rename('s'),
                           d_cn.rename('cn'),
                           d_e.rename('e'),
                           d_rp.rename('rp'),
                           d_ct.rename('ct'),
                           d_pm.rename('pm'),
                           d_t.rename('t'),
                           d_en.rename('en'),
                           d_ri.rename('ri'),
                           d_DTF.rename('DTF')], axis=1)
         #df2
         #len(df2)
In [22]: df2.dropna(axis = 0, subset = ['DTF'], inplace=True)
In [23]:
         #df2
         #len(df2)
In [24]:
         # Define 5 series, one for each year, indexed by country code
         d_2018 = pd.Series(df2.loc[2018]['DTF'])
         #len(d_2018)
         d_2017 = pd.Series(df2.loc[2017]['DTF'])
         #len(d 2017)
         d_2016 = pd.Series(df2.loc[2016]['DTF'])
         #len(d 2016)
         d_2015 = pd.Series(df2.loc[2015]['DTF'])
         #len(d 2015)
         d_2014 = pd.Series(df2.loc[2014]['DTF'])
         #len(d_2014)
```

```
In [25]: # Create series objects that I can sort, one for each year
         df_2018 = pd.DataFrame(d_2018)
         dfs_2018 = df_2018.sort_values(by =['DTF'], axis=0, ascending=False, inp
         lace=False, kind='quicksort')
         length=len(dfs 2018)
         dfs_2018['Rank18']= pd.Series(range(1, length + 1 ,1), index=dfs_2018.in
         dex)
         df_2017 = pd.DataFrame(d_2017)
         dfs_2017 = df_2017.sort_values(by =['DTF'], axis=0, ascending=False, inp
         lace=False, kind='quicksort')
         length=len(dfs 2017)
         dfs 2017['Rank17']= pd.Series(range(1, length + 1 ,1), index=dfs 2017.in
         dex)
         df 2016 = pd.DataFrame(d 2016)
         dfs_2016 = df_2016.sort_values(by =['DTF'], axis=0, ascending=False, inp
         lace=False, kind='quicksort')
         length=len(dfs 2016)
         dfs 2016['Rank16']= pd.Series(range(1, length + 1,1), index=dfs 2016.in
         dex)
         df 2015 = pd.DataFrame(d 2015)
         dfs_2015 = df_2015.sort_values(by =['DTF'], axis=0, ascending=False, inp
         lace=False, kind='quicksort')
         length=len(dfs 2015)
         dfs 2015['Rank15']= pd.Series(range(1, length + 1 ,1), index=dfs 2015.in
         dex)
         df 2014 = pd.DataFrame(d 2014)
         dfs 2014 = df 2014.sort values(by =['DTF'], axis=0, ascending=False, inp
         lace=False, kind='quicksort')
         length=len(dfs 2014)
         dfs 2014['Rank14']= pd.Series(range(1, length + 1 ,1), index=dfs 2014.in
         dex)
```

```
In [26]: # Create a new dataframe object dfs indexed by country code that holds s
    orted series
#
# Combine the sorted series into a single dataframe indexed by country
#
dfs_all = pd.concat([dfs_2014, dfs_2015, dfs_2016, dfs_2017,dfs_2018], a
    xis=1)
```